RESEARCH(研究)

Research topic ( I ) Toxicity assessment with multiple endpoints using aquatic animals as model organisms

研究主題 () 以水生生物為平台之多指標毒性評估

Ecotoxicity is a substance or physical agent that can cause an ecosystem potential harm. Ecotoxicity research is the study of the effects of pollutants on living organisms and their interactions in the environment. This includes the effects of chemicals, radiation, or other pollutants on plants, animals, and other organisms, as well as the ecosystems in which they live. Ecotoxicity can result in various adverse effects, such as reduced biodiversity, reproductive failure, physiological damage, and death of organisms, and can ultimately have far-reaching impacts on entire ecosystems. One of my lab’s research topics is using biochemical analysis, molecular biology techniques, and multiple endpoints to evaluate the environmental ecotoxicity of chemicals, physical factors, or novel materials. We use aquatic animals (Zebrafish and Daphnia) as an assessment platform to conduct different experiments. We use the Zebrabox machine to evaluate ecotoxicity. The process involves preparing samples, preparing zebrafish embryos, adding the test substances, monitoring the embryos, and analyzing the results. We also use neurobehavioral and biochemical methodology to perform ecotoxicity assessments of emerging pollutants in zebrafish and Daphnia. By multiple behavioral endpoints obtained from critical swimming speed, novel tank exploration, mirror biting, predator avoidance, social interaction, shoaling, color preference, circadian rhythm, short-term memory tests, and 3D locomotion and combined with biochemical analysis, we can evaluate emerging pollutants’ ecotoxicity.

生態毒性是可能導致生態系統潛在危害的物質或物理因素。生態毒性研究是探討污染物對生物體的影響及其在環境中的相互作用,包括化學品、輻射或其他污染物對植物、動物和其他生物體以及它們賴以生存的生態系統的影響。生態毒性會導致各種不利影響,例如生物多樣性減少、繁殖障礙、生理損傷和生物死亡,並最終可能對整個生態系統產生深遠影響。本實驗室的研究主題之一是使用生化分析、分子生物學技術和多個評估終點來評估化學品、物理條件或新興材料的環境生態毒性,使用水生動物(斑馬魚和水蚤)作為評估平台來進行不同的測試實驗。本實驗室採用 Zebrabox 儀器篩選評估生態毒性,實驗過程包括樣品準備、準備斑馬魚胚胎、添加測試物質、監測胚胎活動和結果分析。我們同時採用神經行為學和生化方法對斑馬魚和水蚤中出現的污染物進行生態毒性評估,藉由從臨界游泳速度、新魚缸探索測試 、鏡咬、掠食者迴避、社群互動、群游、顏色偏好、晝夜節律、短期記憶測試以及三維 (3D) 游泳行為測量中獲得的多個行為終點數據,並結合生化分析,可以評估新興污染物的生態毒性。

Research topic () Establishment of Cell Polar Growth Observation Model and Analysis of Cell Polar Growth Pattern

研究主題 () 細胞極性生長觀測模型之建立與生長模式之分析

Subject (Ⅰ) Establish the observation model of cell polar growth by using upconversion nanoparticles(UCNPs)

主軸一:以上轉換奈米粒子建立細胞極性生長之觀測模型

Cell polarity is the asymmetric distribution of cellular components and structures within a cell, which enables cells to perform specific functions. Cell polarity is closely related to development, growth, and environmental regulatory responses. In the model plant Arabidopsis, many researchers have demonstrated that ROP proteins (Rho-related small GTPase from plants) are central regulators of regulating cell polarity. There is still much room for further understanding of how ROP proteins affect cell polarity formation. In this study, we plan to use the Lanthanide-Doped upconversion nanoparticles (UCNPs) to control ROP proteins in the form of Photoactivatable effectors. With the superior optical properties of the upconversion nanoparticles, near-infrared (near-IR) excitations can emit signals of short wavelengths, allowing the photocaged ROP protein to be activated promptly. At the same time, UCNPs can significantly lower the damage to the tissue and have the advantages of high sensitivity, high penetrating power, low noise, and avoidance of spontaneous fluorescence generation of cells and tissues. This study has completed a series of works on preparing and analyzing lanthanide-doped superconducting nanoparticles. This process condition can stably synthesize lanthanide-doped up-conversion nanoparticles. The expression and purification of Rho proteins are also completed. Surface modification of UCNPs and protein function tests still keep going. This study continues to achieve the goal of establishing an observational model platform for the application of up-conversion nanoparticles to cell polarity growth and its expansion applications.

細胞極性(cell polarity)是細胞內細胞成分和結構的不對稱分佈,此現象使細胞能夠執行特定功能。細胞極性與發育、生長及環境調節反應密切相關。在模式植物阿拉伯芥中,許多文獻已證實 ROP 蛋白質(Rho-related small GTPase from plants)是調節細胞極性的中心調控者。探討 ROP 蛋白質之訊息傳遞如何影響細胞極性之形成尚有許多值得深入釐清之空間。本研究計劃預計以鑭系元素摻雜上轉換奈米粒子(Lanthanide-Doped upconversion nanoparticles, UCNPs),結合在阿拉伯芥中細胞極性生長已知之調控現象,以 Photoactivatable effectors 的形式控制 ROP 蛋白質的活性,建立細胞極性生長觀察之模式。藉由上轉換奈米粒子所具備的優異光學特性,可以接受近紅外光(near-IR)之激發而放出短波長之訊號,適時讓 photocaged ROP 蛋白質的活性被啟動,同時對細胞組織之傷害大幅低,並具備高靈敏度、高穿透力、低雜訊以及避免細胞組織自發螢光產生之各種優點,達成最佳並可控制之觀測條件。若能建立此一觀察機制,未來亦可以此探討細胞極性生長的未知問題,並應用於其他細胞分子機制之研究。本研究計畫中在鑭系元素摻雜上轉換奈米粒子之製備與分析上,已完成階段性工作,可藉由此製程條件穩定合成鑭系元素摻雜上轉換奈米粒子,同時在表達純化蛋白質上同樣完成階段性工作,並持續進行後續之材料表面修飾與蛋白質功能測試,持續以達成建立上轉換奈米粒子應用於細胞極性生長之觀測模式平台及其擴充應用為目標。

Subject (Ⅱ) Cell polar growth pattern analysis under asymmetric game theory consideration

主軸二:以不對稱賽局理論分析細胞極性生長之模式

Asymmetric game theory is a branch of game theory that deals with situations where one player has more information, resources, or power than the other. In the context of cell polar growth, we plan to use asymmetric game theory to model situations where different factors affect the growth and division of cells in different ways. We will first analyze pollen tube growth.

Analyzing pollen cell polar growth patterns under asymmetric game theory consideration involves combining principles from plant biology and game theory. We use microscopy techniques to observe pollen cell growth in real-time or use time-lapse imaging to capture the growth patterns of individual pollen cells over time. During pollen germination and tube growth, we record physiological data of tube growth under different factors. After collecting pollen cell growth patterns data, we model them using game theory. Game theory is a branch of mathematics that studies decision-making involving multiple parties with conflicting interests. The game between the plant and the pollen tube is often not symmetrical. This means that the two parties have different payoffs for the same outcomes. For example, the plant may benefit more from a successful pollination event than the pollen tube. Therefore, it is essential to consider asymmetric game theory when analyzing pollen cell growth patterns. Using the data and game theory models, we analyze the growth patterns of pollen cells under asymmetric game theory considerations. This analysis can help us understand the decision-making processes involved in pollen cell growth and how the plant and the pollen tube’s interests can affect the outcomes.

In summary, analyzing pollen cell polar growth patterns under asymmetric game theory consideration involves collecting data, modeling the growth patterns using game theory, considering asymmetry, and exploring the results to conclude. We believe cell polar growth pattern analysis under asymmetric game theory consideration can provide valuable insights into the complex processes that govern cell growth and division and help researchers develop new strategies for controlling these processes in different contexts.

不對稱賽局理論是賽局理論的一個分支,可分析當其中一方比另一方擁有更多信息、資源或權力的情況。在細胞極性生長的背景下,我們計劃使用不對稱賽局理論來模擬不同因素以不同方式影響細胞生長和分裂的情況。我們首先將以花粉管生長為分析對象。

在不對稱賽局理論考慮下分析花粉細胞極性生長模式涉及結合植物生物學和賽局理論的原理。我們使用顯微鏡技術實時觀察花粉細胞的生長,或使用延時成像來捕捉單個花粉細胞隨時間的生長模式。在花粉萌發和花粉管生長過程中,我們記錄了不同因素下花粉管生長的生理數據。收集花粉細胞生長模式數據後,我們使用賽局理論對其進行建模分析。賽局理論是數學的一個分支,研究涉及利益衝突的多方決策。植物和花粉管之間的賽局往往不是對稱的。這意味著兩方對相同的結果有不同的回報。例如,植物可能比花粉管從成功的授粉事件中獲益更多。因此,在分析花粉細胞生長模式時必須考慮不對稱賽局理論。使用數據和賽局理論模型,我們分析了不對稱賽局理論考慮下花粉細胞的生長模式。這種分析可以幫助我們了解花粉細胞生長所涉及的決策過程,以及植物和花粉管的利益如何影響結果。

總之,在不對稱賽局理論考慮下分析花粉細胞極性生長模式涉及收集數據、使用賽局理論對生長模式建模、考慮不對稱性以及探索結果以得出結論。我們相信,在不對稱賽局理論考慮下的細胞極性生長模式分析可以為控制細胞生長和分裂的複雜過程提供有價值的見解,並幫助研究人員制定在不同環境下控制這些過程的新策略。

Collaboration (合作學者)

蕭崇德教授 Prof. Chung-Der Hsiao

中原大學生物科技系

Department of Bioscience Technology, CYCU

cdhsiao@cycu.edu.tw

http://cdhsiao.weebly.com

陳皇州教授 Prof. Huang-Chou Kelvin Chen

國立屏東大學應用化學系

Department of Applied Chemistry, NPTU

kelvin@mail.nptu.edu.tw

https://reurl.cc/Y8qjbD

廖于賢教授 Prof. Yu-Hsien Liao

國立屏東大學應用數學系

Department of Applied Mathematics, NPTU

twincos@mail.nptu.edu.tw

https://reurl.cc/eXymbW

許華書教授 Prof. Hua-Shu Hsu

國立屏東大學應用物理系

Department of Applied Physics, NPTU

hshsu@mail.nptu.edu.tw

https://reurl.cc/Y8qjal

Research Grants in Recent Years (近年執行計畫)

外部計畫
計畫名稱計畫內擔任工作起訖年月日補助或委託機構

基於運動性能評估不同止痛藥對斷鰭斑馬魚的療效及機制探討(NSTC 112-2313-B-153-001)

Evaluation of Various Painkillers’ Effectiveness and Mechanism in Fin-amputated Zebrafish Based on Locomotion Performance

主持人2023/08/01 ~ 2024/07/31

國科會(NSTC)

以碎形維度和熵來解析斑馬魚處於單重及雙重逆境之行為模式(MOST 111-2313-B-153-001-)

Analyze the behavior patterns of zebrafish under single and double stress with fractal dimension and entropy

主持人2022/08/01 ~ 2023/07/31

國科會(NSTC)

科普活動:「國境最南之偏鄉永續科普」實施計畫(主題三)(NSTC 110-2515-S-153-002-)共同主持人2021/08/01 ~ 2022/10/31

科技部(MOST)

以PBL搖滾潛伏的分生魂(教育部教學實踐研究計畫PAG1090107)

Rock your soul of molecular biology by PBL

主持人2020/08/01 ~ 2021/07/31

教育部(MOE)

以唾手可得之擴增實境翻轉分子生物領域微觀概念之學習(教育部教學實踐研究計畫PAG1080034)

Improving the microscopic concept learning of molecular biology by using the augmented reality of mobile devices

主持人2019/08/01 ~ 2021/01/31

教育部(MOE)

以上轉換奈米粒子建立細胞極性生長之觀測模型(2/2)(MOST 107-2633-B-153-001-)

Establish the observation model of cell polar growth by upconversion nanoparticles(UCNPs)

主持人2018/08/01 ~ 2019/12/31

科技部(MOST)

以上轉換奈米粒子建立細胞極性生長之觀測模型(1/2)(MOST 106-2633- B-153-001-)

Establish the observation model of cell polar growth by upconversion nanoparticles(UCNPs)

主持人2017/08/01 ~ 2018/07/31

科技部(MOST)

107學年度精進師資素質及特色發展計畫(分項計畫2) 子計畫3-1 達文西綠活教室:師資生探究與實作成長暨服務社群子計畫主持人2018/08/01 ~ 2019/07/31

教育部(MOE)

106學年度精進師資素質及特色發展計畫(分項計畫2) 子計畫3-1 達文西綠活教室:師資生探究與實作成長暨服務社群子計畫主持人2017/08/01 ~ 2018/07/31

教育部(MOE)

校內計畫
計畫名稱計畫內擔任工作起訖年月日補助或委託機構
112年度國立屏東大學屏東科學園區先導型學術研究計畫-以持續施加環境磁場範圍之弱磁場評估其對脊椎模式生物斑馬魚的生理影響(NPTU-112-015)主持人2023/03/03 ~ 2023/12/20國立屏東大學
教育部-【深耕】補助111年度高教深耕計畫-子計畫1:「SPIRIT課程研創」計畫-師生專業外語社群主持人2022/02/01 ~ 2022/12/15國立屏東大學
110 年度國立屏東大學教師申請整合型研究推動計畫-綠色化學作用程序中各類催化劑組合的最佳或均衡狀態(NPTU-110-003子計畫三:水生環境除草劑毒理現象與塑膠微粒催化複合性加成之模式推演與毒性評估)子計畫主持人2021/02/08 ~ 2021/12/20國立屏東大學
教育部-【深耕】補助110年度高教深耕計畫-子計畫1:「SPIRIT課程研創」計畫-師生專業外語社群主持人2021/02/01 ~ 2021/12/15國立屏東大學
109 年度國立屏東大學跨國研究補助計畫-跨國學術研究-以磁性奈米粒子作為特定導向功能性生醫載台之開發、檢測與應用(NPTU-109-006子計畫三: 以上轉換奈米粒子結合適體進行微生物偵測之研究)子計畫主持人2020/03/16 ~ 2021/12/20國立屏東大學
109 年度國立屏東大學教師申請跨領域研究團隊計畫-比例配置的理性與感性(NPTU-109-002子計畫三:上轉換粒子以光調控蛋白質活性之均衡評估)子計畫主持人2020/03/16 ~ 2020/12/20國立屏東大學
教育部-【深耕】補助109年度高教深耕計畫-子計畫1:「SPIRIT課程研創」計畫-師生專業外語社群-飛向未來浩瀚無垠-生化國際展翼社群主持人2020/02/01 ~ 2020/12/15國立屏東大學
教育部-【深耕】補助109年度高教深耕計畫-子計畫1:「SPIRIT課程研創」計畫-PBL問題導向社群主持人2020/08/01 ~ 2020/12/15國立屏東大學
教育部-【深耕】補助109年度高教深耕計畫-子計畫 1:「SPIRIT課程研創」計畫-教師專業社群-應用化學系實驗課程品質提升教師專業社群主持人2020/09/15 ~ 2020/12/15國立屏東大學
109年度國立屏東大學教師團隊研發能量鏈結地方大學社會責任(USR)規劃計畫-淬鍊屏東在地科學主持人2020/10/01 ~ 2020/12/20國立屏東大學
108年度國立屏東大學教師專業學習社群計畫-上轉換奈米粒子應用於生物細胞之跨領域探究與實作社群主持人2019/03/01 ~ 2019/12/15國立屏東大學
107 年度國立屏東大學教師申請整合型研究推動計畫-磁性奈米粒子在奈米電子學與生物醫學上的應用(NPTU-107-010)子計畫主持人2018/03/31 ~ 2018/12/20國立屏東大學
106年度國立屏東大學跨國研究補助試辦計畫-功能性生物分子活性反應機制之研究(NPTU-106-003子計畫三:以細胞分子生物技術探討植物雄配子體CSN4蛋白質之定位與功能)子計畫主持人2018/01/31 ~ 2018/12/31國立屏東大學